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Abstract—In this paper, a gradient method is studied on the class of (L0, L1)-smooth objective
functions under the condition that only approximate values of the gradient are available at
the iterations of the method. This setting arises when using noisy data. Two classes of prob-
lems are considered, namely, quasar-convex functions with respect to any solution that satisfy
the Polyak–�Lojasiewicz gradient dominance condition (the PL condition) and quasar-convex
functions without the PL condition but with an additional constraint on the quasar-convexity
parameter. For quasar-convex functions with the PL condition, a nearly linear convergence
rate is established in the neighborhood of the exact solution. If inexact gradient values are
sufficiently small (which is achieved in a finite number of iterations), the method will converge
with a nearly linear rate on the class of problems with the PL condition without the additional
assumption of quasar-convexity. For (0,M)-smooth quasar-convex functions, an adaptive gra-
dient method is proposed, and its convergence rate is estimated. As shown, when using exact
gradient values, the method converges with a linear rate.

Keywords : gradient method, Δ-inexact gradient, (L0, L1)-smooth function, ρ-quasar-convex
function, Polyak–�Lojasiewicz condition, logistic regression

DOI: 10.31857/S0005117925090012

1. INTRODUCTION

With the rapid advancement of machine learning, it is increasingly topical to develop and ana-
lyze numerical optimization methods with effective convergence guarantees. To achieve the optimal
convergence rate of conventional methods, such as gradient descent and its modifications, a key
assumption is the smoothness of the objective function (i.e., the Lipschitz continuity of its gradi-
ent). In the context of modern machine learning problems, this assumption may turn out to be
too stringent [1]. As a rule, quite natural and simple-to-implement methods perform poorly for
deep learning problems, where the global smoothness condition often fails. For example, variance
reduction methods [2–8] are known to be theoretically faster (for minimizing finite sums of smooth
functions), but in practice may be inferior to methods that do not theoretically reduce variance [9].
According to the experiments presented in [1], when training neural networks, the norm of the
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Hessian may correlate with the norm of the gradient of the loss function. Thus, the above factors
motivate researchers to find and propose alternative assumptions relaxing the standard smoothness
requirement for the objective function.

One such assumption is the so-called generalized (L0, L1)-smoothness, pioneered several years
ago [1] for twice differentiable functions. This assumption allows the norm of the Hessian of the
objective function to increase linearly with the growth of the gradient norm. In particular, (L0, L1)-
smoothness can hold even for functions with polynomially growing gradients, which is a typical
situation for deep learning problems. Moreover, the concept of (L0, L1)-smoothness covers a wide
class of problems and can be generalized to differentiable, but not necessarily twice differentiable,
functions [10, 11].

In recent years, many research works have considered various methods for solving (L0, L1)-
smooth optimization problems. However, despite the interest from the scientific community, the
existing results on the convergence of methods remain nonoptimal in several important cases, and
the theoretical analysis is often insufficiently complete. While the most general class of nonconvex
problems, admitting only the convergence of metrics like the gradient norm to zero, has been the
focus of [1] and the later publications [10–16], the class of (L0, L1)-smooth convex functions has
been investigated much less until very recent time (the late 2024–early 2025). In particular, when
applied to (L0, L1)-smooth convex problems, known results on the convergence of methods, such
as gradient descent with clipping [17] and gradient descent with Polyak’s step size [18], either
additionally assume L-smoothness [19, 20] or restrict the step size to make the method’s trajectory
bounded in a domain where the gradient satisfies the Lipschitz condition due to the (L0, L1)-
smoothness of the objective function [21].

Let us review several recent works devoted to the optimization of (L0, L1)-smooth functions.

In [22], the class of strongly convex (L0, L1)-smooth functions was studied, and new convergence
rate guarantees for several existing methods were obtained. In particular, better convergence rate
estimates were derived for gradient descent with (smoothed) clipping and for gradient descent
with Polyak’s step size. Unlike the existing results, these estimates neither involve the standard
smoothness assumption nor have an exponential dependence on the distance from the initial point
to the solution.

Parallel to [22], similar results for the gradient method with various step size strategies, including
Polyak’s step, were independently obtained in [23], along with new complexity estimates for the
gradient method with normalized step on the class of (L0, L1)-smooth problems.

A more detailed analysis of the convergence of gradient descent and its modifications under gen-
eralized (L0, L1)-smoothness was presented in [24]. In the convex case, it was shown that the con-
vergence rate of the gradient method changes depending on the gradient norm: for ‖∇f(xk)‖ � L0

L1
,

a linear rate is achieved, and a standard sublinear convergence rate is observed if ‖∇f(xk)‖ < L0
L1

.

Unlike the above-mentioned works, here we analyze the gradient method for (L0, L1)-smooth
problems under the condition that only approximate (additively inexact) gradient values are avail-
able at each iteration of the method. That is, this research further develops, in a new direction,
the paper [25], where similar problems were investigated for smooth problems in the classical sense.
Note that several directions are considered. First, we study the convergence of the method for
ρ-quasar-convex, with respect to any exact solution [26–28], (L0, L1)-smooth functions satisfying
the Polyak–�Lojasiewicz (PL) condition

f(x)− f(x∗) �
1

2μ
‖∇f(x)‖2 ∀x ∈ R

n, μ > 0, (1)

where ‖ · ‖ denotes the Euclidean norm and x∗ is a minimizer of the function f. As is shown below,
under some assumptions, the method converges with a linear rate to some neighborhood of the exact
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solution. It is also proven that starting from some iteration, the method converges on the class
of problems with the PL condition (without requiring quasar-convexity). Second, we separately
consider the class of ρ-quasar-convex (0,M)-smooth functions, representing interest in the context
of machine learning problems (particularly when training logistic regression models). For this class
of problems, an adaptive modification of the gradient method using inexact gradients at iterations
is proposed, and convergence rate estimates are obtained under some constraint on the quasar-
convexity parameter ρ. The efficiency of the proposed methods is confirmed by computational
experiments for logistic regression problems (which satisfy the PL condition on any compact set [29])
and a certain nonconvex quasar-convex problem [27].

2. PROBLEM STATEMENT AND NECESSARY BACKGROUND

Consider minimization problems of the form

min
x∈Rn

f(x), (2)

where f : Rn −→ R is a convex and (L0, L1)-smooth function. Throughout this paper, x∗ and
f∗ = f(x∗) denote a global minimizer and the global minimum value, respectively, of the function
f ; the norm ‖ · ‖ is Euclidean.

As already noted, the (L0, L1)-smoothness condition (L0, L1 > 0) was initially introduced in [1]
for twice differentiable functions f : Rn −→ R as follows:

‖∇2f(x)‖ � L0 + L1‖∇f(x)‖ ∀x ∈ R
n, (3)

where ‖ · ‖ indicates the Euclidean norm for vectors and the spectral norm for matrices.

In [10], this concept was extended to the class of differentiable, but not necessarily twice differ-
entiable, functions.

Definition 1. A function f : Rn −→ R is said to be (L0, L1)-smooth if, for any x, y ∈ R
n such

that ‖y − x‖ � 1
L1

,

‖∇f(x)−∇f(y)‖ � (L0 + L1‖∇f(y)‖) ‖x− y‖. (4)

Consider several examples of functions satisfying condition (4).

Example 1. The function f(x) = ‖x‖2m is (2m, 2m−1)-smooth. At the same time, for all L � 0,
f is not L-smooth for m � 2; for details, see [22]. (Recall that an L-smooth function is one whose
gradient satisfies the Lipschitz condition.)

Example 2. The function f(x) = eax, a ∈ R
n, is (0, ‖a‖)-smooth. At the same time, for all L � 0,

f(x) is not L-smooth for a �= 0 [22].

Example 3. The logistic function f(x) = log(1 + exp(−aTx)), where a ∈ R
n, is (L0, L1)-smooth

with L0 = 0 and L1 = ‖a‖ [22].

The concept of (L0, L1)-smoothness was generalized in [11] as follows: a function f : Rn −→ R

is said to be α-symmetrically generalized smooth if, for some α ∈ [0, 1] and any x, y ∈ R
n,

‖∇f(y)−∇f(x)‖ �
(
L0 + L1 max

θ∈[0,1]
‖∇f(θy + (1− θ)x)‖α

)
‖y − x‖. (5)

As demonstrated in [11], condition (5) is more general than (3) and (4): the validity of (3) or (4)
implies the validity of (5) (with α = 1). Moreover, for twice differentiable functions, conditions (3)
and (5) are equivalent for α = 1 [11].

Now we give the definition of a quasar-convex function, a key in this work.
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Definition 2. Let ρ ∈ (0, 1] and μ > 0. A function f : Rn −→ R is said to be (ρ, μ)-quasar strongly
convex if, for all x ∈ R

n,

f(x∗) � f(x) +
1

ρ
〈∇f(x), x∗ − x〉+ μ

2
‖x∗ − x‖2, (6)

where x∗ is a global minimizer of the function f. For μ = 0 the function f is called a ρ-quasar
convex function.

The PL condition can be treated as a relaxation of ordinary strong convexity and, moreover,
of strong quasar-convexity [27]: if f : Rn −→ R is a (ρ, μ)-quasar strongly convex function, then it
satisfies the PL condition (1) with the constant μρ2.

Example 4 [27]. Let f : Rn −→ R be defined as

f(x) = ‖x‖2g
(

x

‖x‖
)
, ∀x ∈ R

n,

where

g(x) = 1 +
n∑

i=1

ai sin(bixi)
2, ∀x = (x1, . . . , xn) ∈ R

n.

Then the function f is (1, 2)-quasar strongly convex, i.e., satisfies the PL-condition (1) with con-
stant 2.

The issues of convergence of the gradient method for convex problems with the generalized
smoothness condition (4) have been actively investigated recently; for example, see [22–24]. The
cited research works presented results on the convergence of the normalized gradient method, the
gradient method with Polyak’s step, and the accelerated gradient method based on the assumption
of generalized smoothness. It was also shown that the gradient method converges with a linear
rate as long as the gradient norms at the iterations remain sufficiently large. This paper is a
continuation and further development of the above works.

Here, we focus on studying gradient descent for the minimization problems (2) under the condi-
tion that, at each iteration of the method, only a gradient with an additive error is available instead
of exact gradient values. Recall that for Δ > 0, a vector ∇̃f(x) is called the inexact gradient of a
function f at a point x if

‖∇f(x)− ∇̃f(x)‖ � Δ;

and Δ > 0 is called the gradient inexactness parameter.

In the case of small gradient norms at the method’s iterations, it becomes challenging to derive
theoretical estimates of the convergence rate. The reason is that, unlike the case of using exact
gradients, it becomes impossible to ensure a monotonic decrease of the gradient norm at each
iteration. This problem can be circumvented by additionally requiring that the objective function f
satisfies the PL condition. According to [25], for problems with inexact gradients, the PL condition
implies the inequality

‖∇̃f(x)‖2 � μ(f(x)− f∗)−Δ2 ∀x ∈ R
n, μ > 0. (7)

This section provides the problem statement and necessary background. In Section 3, we study
the gradient method for (L0, L1)-smooth problems under an additive error in the gradient at each
iteration. The method’s convergence rate on the class of ρ-quasar-convex functions satisfying the PL
condition is estimated. As established, the convergence rate is linear up to a certain level of gradient
values. Section 4 deals with an adaptive modification of the gradient method for (0,M)-smooth
ρ-quasar-convex problems. In Section 5, we present the results of computational experiments for
the logistic regression problem (which satisfies the PL condition on any compact set [29]) and a
certain nonconvex quasar-convex problem [27].
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3. GRADIENT METHOD FOR (L0, L1)-SMOOTH ρ-QUASAR CONVEX FUNCTIONS

Let f : Rn → R be an (L0, L1)-smooth (4) and ρ-quasar convex function with respect to any
solution x∗ (see Definition 2, μ = 0):

f(x∗) � f(x) +
1

ρ
〈∇f(x), x∗ − x〉, ρ ∈ (0, 1]. (8)

If f is strongly quasar-convex (see Definition 2, μ > 0), then the solution x∗ is unique and
f is strongly quasar-convex with respect to any solution. Note that problems with nonconvex
smooth (hence, (L0, L1)-smooth) ρ-quasar-convex functions are often encountered in applications
(see Example 4) [27].

To solve problem (2), we investigate the gradient method of the form

xk+1 = xk − ηk∇̃f(xk) (9)

with the step size

ηk =
α

L0 + L1

(
‖∇̃f(xk)‖+Δ

) , (10)

where α ∈ (0, 1] and ∇̃f(xk) denotes the inexact gradient of the function f at a point xk.

Note that, despite the use of approximate gradient values in the algorithm, the theoretical
analysis assumes the existence of the exact gradient.

Let us prove several lemmas necessary for deriving convergence rate estimates of the method.

Lemma 1 [10, Lemma A3]. Let a function f(x) be (L0, L1)-smooth (4). Then, for all x, y ∈ R
n

such that ‖x− y‖ � 1
L1

,

f(y) � f(x) + 〈∇f(x), y − x〉+ L0 + L1‖∇f(x)‖
2

‖y − x‖2. (11)

Proof. Let g(t) = f(x+ t(y − x)) for t ∈ [0, 1]. Then

f(y)− f(x) = g(1) − g(0) =

1∫
0

g′(t)dt =
1∫

0

〈∇f(x+ t(y − x)), y − x〉 dt.

We add and subtract 〈∇f(x), y − x〉 to/from the integrand:

f(y)− f(x) =

1∫
0

〈∇f(x), y − x〉 dt+
1∫

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt.

Computing the first integral and applying the Cauchy–Bunyakovsky–Schwarz inequality to the
expression under the second integral, we obtain

f(y)− f(x) � 〈∇f(x), y − x〉+
1∫

0

‖∇f(x+ t(y − x))−∇f(x)‖‖y − x‖dt.

In view of

‖∇f(y)−∇f(x)‖ � (L0 + L1‖∇f(x)‖) ‖y − x‖,
AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025
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we have the inequality

f(y)− f(x) � 〈∇f(x), y − x〉+ ‖y − x‖
1∫

0

(L0 + L1‖∇f(x)‖) ‖y − x‖tdt

and, consequently,

f(y) � f(x) + 〈∇f(x), y − x〉+ L0 + L1‖∇f(x)‖
2

‖y − x‖2.

Remark 1. Under an additive error in the gradient, inequality (11) takes the form

f(y) � f(x) + 〈∇̃f(x), y − x〉+ L0 + L1(‖∇̃f(x)‖+Δ)

2
‖y − x‖2 +Δ‖y − x‖. (12)

Lemma 2. Let f(x) be an (L0, L1)-smooth function (4). Assume that ‖∇f(xk)‖ > Δ. Then at
the iterations of algorithm (9) with the step size (10), the values of this function decrease mono-
tonically, f(xk+1) � f(xk), and

f(xk)− f(xk+1) �
α(2− α)

2

(‖∇f(xk)‖ −Δ)2

L0 + L1‖∇f(xk)‖+ 2L1Δ
. (13)

Proof. Consider inequality (11) with y = xk+1 and x = xk. Note that ‖xk+1 − xk‖ � 1
L1

. Then
we have

f(xk+1)− f(xk)

� −α〈∇f(xk), ∇̃f(xk)〉
L0 + L1

(
‖∇̃f(xk)‖+Δ

) +
L0 + L1

(
‖∇̃f(xk)‖+Δ

)
2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))2α2‖∇̃f(xk)‖2

=
α2‖∇̃f(xk)‖2 − 2α〈∇f(xk), ∇̃f(xk)〉

2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))
=

α2‖∇̃f(xk)‖2 − 2α〈∇f(xk), ∇̃f(xk)〉+ ‖∇f(xk)‖2 − ‖∇f(xk)‖2
2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))
=

‖α∇̃f(xk)−∇f(xk)‖2 − ‖∇f(xk)‖2
2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

)) .

Therefore,

f(xk)− f(xk+1) �
‖∇f(xk)‖2 − ‖α∇̃f(xk)−∇f(xk)‖2

2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

)) .

We utilize the following relation for α ∈ (0, 1] and a, b ∈ R
n :

‖αa − b‖ = ‖α(a − b) + (α− 1)b‖ � α‖a− b‖+ (1− α)‖b‖.
AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025
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As a result,

f(xk)− f(xk+1)

�
‖∇f(xk)‖2 −

(
α‖∇̃f(xk)−∇f(xk)‖+ (1− α)‖∇f(xk)‖

)2
2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))
� ‖∇f(xk)‖2 − (αΔ+ (1− α)‖∇f(xk)‖)2

2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))
=

α (‖∇f(xk)‖ −Δ) ((2− α)(‖∇f(xk)‖ −Δ) + 2Δ)

2
(
L0 + L1

(
‖∇̃f(xk)‖+Δ

))
>

α(2− α)

2

(‖∇f(xk)‖ −Δ)2

L0 + L1

(
‖∇̃f(xk)‖+Δ

)
� α(2− α)

2

(‖∇f(xk)‖ −Δ)2

L0 + L1‖∇f(xk)‖+ 2L1Δ
.

Lemma 3. Let f be an (L0, L1)-smooth function (4) satisfying the PL condition (1), and let x∗
be the exact solution of problem (2) closest to xk+1. Then the following inequality holds for the
gradient method (9) with the step size (10):

‖xk+1 − x∗‖ �
√

2

μ
(f(x0)− f∗). (14)

Proof. According to [29, Appendix A], for the closest exact solution x∗, the PL condition implies
the quadratic growth of the function:

μ

2
‖xk+1 − x∗‖2 � f(xk+1)− f∗.

Due to the monotonicity of the function f, the inequality becomes

μ

2
‖xk+1 − x∗‖2 � f(x0)− f∗,

and the desired inequality is immediate:

‖xk+1 − x∗‖ �
√

2

μ
(f(x0)− f∗).

Let us denote gk = ‖∇f(xk)‖ −Δ. From Lemma 2 it follows that

f(xk)− f(xk+1) >
α(2− α)

2

g2k
L0 + L1gk + 3L1Δ

. (15)

Assume that gk � 3Δ. We will investigate the convergence of the method depending on the value
of gk. Two cases are possible: gk > L0

L1
and gk � L0

L1
.

For gk > L0
L1

, from (15) we have

f(xk)− f(xk+1) >
α(2− α)

2

g2k
L1gk + L1gk + L1gk

>
α(2 − α)

2

gk
3L1

=
α(2 − α)

6L1
gk. (16)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025
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If gk � L0
L1

, then inequality (15) gives

f(xk)− f(xk+1) >
α(2− α)

2

g2k
L0 + L0 + L0

>
α(2 − α)

2

g2k
3L0

=
α(2 − α)

6L0
g2k. (17)

The following result is true for this class of problems.

Theorem 1. Let f be a ρ-quasar-convex function with respect to each exact solution and, simul-
taneously, an (L0, L1)-smooth function satisfying the PL condition (1). Also, let ‖∇̃f(xk)‖ � 5Δ

and μ < min
{

6L0
α(2−α) ;

72L2
1(f(x0)−f∗)

α2(2−α)2ρ2

}
. Then the following inequality holds for algorithm (9) with the

step size (10):

f(xk+1)− f∗ � max

⎧⎨⎩1− α(2− α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1− α(2− α)μ

6L0

⎫⎬⎭
k+1

(f(x0)− f∗)

+ Δmax

{
1

L1
;
Δ

L0

}
max

⎧⎨⎩L1

√
2
μ (f(x0)− f∗)

ρ
;
L0

μ

⎫⎬⎭ .

(18)

Proof. Consider first the case gk > L0
L1

. By the quasar-convexity of the function f(x) at x = xk,
we have the inequality

f(xk)− f∗ � 1

ρ
〈∇f(xk), xk − x∗〉 � 1

ρ
‖∇f(xk)‖‖xk − x∗‖

=
1

ρ
(gk +Δ)‖xk − x∗‖.

(19)

Applying Lemma 3 to (19) yields

f(xk)− f∗ � 1

ρ

√
2

μ
(f(x0)− f∗)(gk +Δ)

and, consequently,

gk � ρ(f(xk)− f∗)√
2
μ (f(x0)− f∗)

−Δ. (20)

Inequalities (16) and (20) imply the estimate

f(xk+1)− f∗ � f(xk)− f∗ − α(2− α)

6L1

⎛⎝ ρ(f(xk)− f∗)√
2
μ (f(x0)− f∗)

−Δ

⎞⎠

=

⎛⎝1− α(2 − α)ρ

6L1

√
2
μ (f(x0)− f∗)

⎞⎠ (f(xk)− f∗) +
α(2 − α)Δ

6L1
.

(21)

For gk � L0
L1

, from (17) it follows that

f(xk+1)− f(xk) � −α(2− α)

6L0
g2k = −α(2− α)

6L0
(‖∇f(xk)‖ −Δ)2

� −α(2− α)

6L0

(
1

2
‖∇f(xk)‖2 −Δ2

)

= −α(2− α)

12L0
‖∇f(xk)‖2 + α(2 − α)Δ2

6L0

= −α(2− α)μ

6L0
(f(xk)− f∗) +

α(2 − α)Δ2

6L0
.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 9 2025



A GRADIENT METHOD WITH INEXACT GRADIENT INFORMATION 805

Thus,

f(xk+1)− f∗ �
(
1− α(2− α)μ

6L0

)
(f(xk)− f∗) +

α(2 − α)Δ2

6L0
. (22)

Due to inequalities (21) and (22), we obtain

f(xk+1)−f∗ �max

⎧⎨⎩1− α(2− α)ρ

6L1

√
2
μ (f(x0)−f∗)

; 1− α(2 − α)μ

6L0

⎫⎬⎭(f(xk)−f∗)

+ max

{
α(2− α)Δ

6L1
;
α(2 − α)Δ2

6L0

}
,

or

f(xk+1)−f∗ �max

⎧⎨⎩1− α(2 − α)ρ

6L1

√
2
μ (f(x0)−f∗)

; 1− α(2 − α)μ

6L0

⎫⎬⎭(f(xk)−f∗)

+
α(2− α)Δ

6
max

{
1

L1
;
Δ

L0

}

� max

⎧⎨⎩1− α(2− α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1− α(2− α)μ

6L0

⎫⎬⎭
k+1

(f(x0)− f∗)

+
α(2− α)Δ

6
max

{
1

L1
;
Δ

L0

} k∑
i=0

max

⎧⎨⎩1− α(2− α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1− α(2− α)μ

6L0

⎫⎬⎭
i

� max

⎧⎨⎩1− α(2− α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1− α(2− α)μ

6L0

⎫⎬⎭
k+1

(f(x0)− f∗)

+
α(2− α)Δ

6
max

{
1

L1
;
Δ

L0

}
1

1−max

⎧⎨⎩1− α(2−α)ρ

6L1

√
2
μ
(f(x0)−f∗)

; 1− α(2−α)μ
6L0

⎫⎬⎭
.

The following chain of inequalities is true for positive numbers a and b :

1

1−max{1− a; 1− b} =
1

1− (1−min{a; b}) =
1

min{a; b} = max

{
1

a
;
1

b

}
.

Hence,

f(xk+1)− f∗ � max

⎧⎨⎩1− α(2 − α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1 − α(2 − α)μ

6L0

⎫⎬⎭
k+1

(f(x0)− f∗)

+
α(2 − α)Δ

6
max

{
1

L1
;
Δ

L0

}
6

α(2 − α)
max

⎧⎨⎩L1

√
2
μ (f(x0)− f∗)

ρ
;
L0

μ

⎫⎬⎭
� max

⎧⎨⎩1− α(2 − α)ρ

6L1

√
2
μ (f(x0)− f∗)

; 1 − α(2 − α)μ

6L0

⎫⎬⎭
k+1

(f(x0)− f∗)

+ Δmax

{
1

L1
;
Δ

L0

}
max

⎧⎨⎩L1

√
2
μ (f(x0)− f∗)

ρ
;
L0

μ

⎫⎬⎭ .
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Remark 2. For algorithm (9), the number of iterations with ‖∇̃f(xk)‖ � 5Δ can be estimated
as

N �
⌈
6L2

1(f(x0)− f∗)
α(2 − α)L0

⌉
+

⌈
2L0(f(x0)− f∗)
3α(2 − α)Δ2

⌉
.

Proof. Let us estimate the number of iterations where gk > L0
L1

. From (16) it follows that

f(xk)− f(xk+1) >
α(2− α)L0

6L2
1

.

Let i1, . . . , im, p = 1,m, be the iterations for which gip > L0
L1

. Then summation yields the inequality

f(x0)− f∗ � f(xi1)− f(xim) �
α(2− α)L0

6L2
1

m

and, consequently,

m �
⌈
6L2

1(f(x0)− f∗)
α(2 − α)L0

⌉
, L0 �= 0.

Now we estimate the number of iterations for which gk � L0
L1

. In view of g2k � 9Δ2, inequality (17)

leads to the estimate f(xk) − f(xk+1) >
9α (2−α)Δ2

6L0
. Let j1, . . . , jn, l = 1, n, be the iterations for

which gjl � L0
L1

. Then summation yields the inequality

f(x0)− f∗ � f(xj1)− f(xjn) �
9α(2− α)Δ2

6L0
n,

and the number of such iterations satisfies the upper bound

n �
⌈
2L0(f(x0)− f∗)
3α(2 − α)Δ2

⌉
.

Remark 3. According to inequality (21), the method (9) with the step size (10) converges with
a rate close to that of a geometric progression for sufficiently large gradient norms (i.e., gk > L0

L1
).

Remark 4. Suppose that an acceptable solution quality is achieved under the condition
‖∇̃f(xk)‖ < 5Δ. Indeed, if ‖∇̃f(xk)‖ < 5Δ, then ‖∇f(xk)‖ < 6Δ, and the PL condition (1) gives

f(xk)− f∗ � 1

2μ
‖∇f(x)‖2 <

18Δ2

μ
.

Remark 5. Since the number of iterations with gk > L0
L1

is limited, starting from some iteration N

the gradient norm will be less than L0
L1

. Then it can be stated that the method (9) with the step
size (10) converges on the class of problems with the PL condition (without requiring ρ-quasar-
convexity) starting from this number. Thus, starting from some iteration, we obtain:

1) either

f(xk+1)− f∗ �
(
1− α(2 − α)μ

6L0

)k

(f(xN )− f∗) +
Δ2

μ

from inequality (22) by recursion,

2) or an acceptable accuracy has already been achieved.
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4. ADAPTIVE GRADIENT METHOD FOR QUASAR-CONVEX
(0,M)-SMOOTH FUNCTIONS

Consider the case L0 = 0, corresponding, e.g., to the logistic regression problem. Denoting
M = L1 for convenience, we write condition (4) as

‖∇f(y)−∇f(x)‖�M‖∇f(x)‖‖y−x‖ ∀x, y ∈R
n such that ‖y−x‖� 1

M
. (23)

In this section, an adaptive modification of the gradient method using inexact gradient information
will be investigated on the class of ρ-quasar convex functions.

Let f be a (0,M)-smooth and ρ-quasar-convex function with ρ ∈
(
1
2 , 1

]
. (Unlike the previous

section, this condition holds not necessarily with respect to each exact solution.) Consider the fol-
lowing adaptive modification of the gradient method using inexact gradient values at the iterations.

Algorithm 1 (the adaptive gradient method for (0,M)-smooth problems).

1. Input: x0 ∈ R
n, Δ > 0, 0 < M0 < 2M, and α > 0.

2. k = 0.
3. Repeat:
4. Mk+1 = max {M0/2,Mk/2} ,
5. ηk = α

Mk+1

(
‖∇̃f(xk)‖+Δ

) ,
6. xk+1 = xk − ηk∇̃f(xk),

7. If f(xk)− f(xk+1) � α(2−α)
4Mk+1

(
‖∇̃f(xk)‖ − 2Δ

)
and

f(xk)− f(xk+1) � α
(
1− α

2

) ‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

− Δα
Mk+1

,

8. then k := k + 1;
9. otherwise,
10. Mk+1 = 2Mk+1 and get back to line 5.
11. Output: x̂ = xk+1.

Now we prove several auxiliary statements for (0,M)-smooth functions. In particular, they will
justify the correctness of Algorithm 1, i.e., the validity of the iteration exit criterion (see line 7 of
Algorithm 1) for (0,M)-smooth functions for sufficiently large Mk+1.

Lemma 4. Let f(x) be a (0,M)-smooth function. Assume that ‖∇̃f(xk)‖ > 5Δ and {Mi}ki=0 is
a sequence such that Mi+1 � M. Then at the iterations of the algorithm

xk+1 = xk − α

Mk+1

(
‖∇̃f(xk)‖+Δ

)∇̃f(xk), α ∈ (0, 1],

the values of this function are monotonically nonincreasing, f(xk+1) � f(xk), and

f(xk)− f(xk+1) �
α(2 − α)

2

(‖∇̃f(xk)‖ − 2Δ)2

Mk+1(‖∇̃f(xk)‖+Δ)
. (24)

Proof. For L0 = 0 and L1 = M, inequality (11) implies

f(y) � f(x) + 〈∇f(x), y − x〉+ M‖∇f(x)‖
2

‖y − x‖2.
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With y = xk+1 and x = xk, we obtain

f(xk+1)− f(xk)

� −α〈∇f(xk), ∇̃f(xk)〉
Mk+1

(
‖∇̃f(xk)‖+Δ

) +
M‖∇f(xk)‖

2M2
k+1

(
‖∇̃f(xk)‖+Δ

)2α2‖∇̃f(xk)‖2

� −α〈∇f(xk), ∇̃f(xk)〉
Mk+1

(
‖∇̃f(xk)‖+Δ

) +
M

(
‖∇̃f(xk)‖+Δ

)
2M

(
‖∇̃f(xk)‖+Δ

) α2‖∇̃f(xk)‖2
Mk+1

(
‖∇̃f(xk)‖+Δ

)
=

α2‖∇̃f(xk)‖2 − 2α〈∇f(xk), ∇̃f(xk)〉
2Mk+1

(
‖∇̃f(xk)‖+Δ

)
=

α2‖∇̃f(xk)‖2 − 2α〈∇f(xk), ∇̃f(xk)〉+ ‖∇f(xk)‖2 − ‖∇f(xk)‖2
2Mk+1

(
‖∇̃f(xk)‖+Δ

)
=

‖α∇̃f(xk)−∇f(xk)‖2 − ‖∇f(xk)‖2
2Mk+1

(
‖∇̃f(xk)‖+Δ

) .

Therefore,

f(xk)− f(xk+1) �
‖∇f(xk)‖2 − ‖α∇̃f(xk)−∇f(xk)‖2

2Mk+1

(
‖∇̃f(xk)‖+Δ

) .

We take advantage of the following relation for α ∈ (0, 1] and a, b ∈ R
n :

‖αa − b‖ = ‖α(a − b) + (α− 1)b‖ � α‖a− b‖+ (1− α)‖b‖.

As a result,

f(xk)− f(xk+1)

�
‖∇f(xk)‖2 −

(
α‖∇̃f(xk)−∇f(xk)‖+ (1− α)‖∇f(xk)‖

)2
2Mk+1

(
‖∇̃f(xk)‖+Δ

)
� ‖∇f(xk)‖2 − (αΔ+ (1− α)‖∇f(xk)‖)2

2Mk+1

(
‖∇̃f(xk)‖+Δ

)
=

α (‖∇f(xk)‖ −Δ) ((2− α)(‖∇f(xk)‖ −Δ) + 2Δ)

2Mk+1

(
‖∇̃f(xk)‖+Δ

)
>

α(2− α)

2

(‖∇f(xk)‖ −Δ)2

Mk+1

(
‖∇̃f(xk)‖+Δ

)
� α(2− α)

2

(
‖∇̃f(xk)‖ − 2Δ

)2
Mk+1

(
‖∇̃f(xk)‖+Δ

) .
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Let {Mi}ki=0 be a sequence of positive numbers satisfying the assumptions of the previous the-

orem. Given ‖∇̃f(xk)‖ � 5Δ, from (24) it follows that

f(xk)− f(xk+1) �
α(2− α)(‖∇̃f(xk)‖ − 2Δ)2

2
(
Mk+1(‖∇̃f(xk)‖ − 2Δ) + 3Mk+1Δ

)
� α(2 − α)

4Mk+1

(
‖∇̃f(xk)‖ − 2Δ

)
.

(25)

Lemma 5. Let f(x) be a (0,M)-smooth function, and let {Mi}ki=0 be some sequence such that
Mi+1 � M. Then for the algorithm

xk+1 = xk − α

Mk+1

(
‖∇̃f(xk)‖+Δ

)∇̃f(xk), α ∈ (0, 1],

the following inequality holds:

‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

� 2

α(2 − α)
(f(xk)− f(xk+1)) +

2Δ

Mk+1(2− α)
. (26)

Proof. For L0 = 0 and L1 = M, inequality (12) gives

f(y) � f(x) + 〈∇̃f(x), y − x〉+ M(‖∇̃f(x)‖+Δ)

2
‖y − x‖2 +Δ‖y − x‖.

With y = xk+1 and x = xk, we have

f(xk+1) � f(xk) + 〈∇̃f(xk), xk+1 − xk〉

+
M(‖∇̃f(xk)‖+Δ)

2
‖xk+1 − xk‖2 +Δ‖xk+1 − xk‖

� f(xk)− α‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

+
α2‖∇̃f(xk)‖2

2Mk+1(‖∇̃f(xk)‖+Δ)

+
Δα‖∇̃f(xk)‖

Mk+1(‖∇̃f(x)‖+Δ)

= f(xk)− α

(
1− α

2

) ‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

+
Δα‖∇̃f(xk)‖

Mk+1(‖∇̃f(xk)‖+Δ)
.

Let us estimate the term containing Δ :

Δα‖∇̃f(xk)‖
Mk+1(‖∇̃f(xk)‖+Δ)

�
Δα

Mk+1
Mk+1(‖∇̃f(xk)‖+Δ)

Mk+1(‖∇̃f(xk)‖+Δ)
=

Δα

Mk+1
.

Thus,

f(xk)− f(xk+1) � α

(
1− α

2

) ‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

− Δα

Mk+1
,

which can be equivalently written as

‖∇̃f(xk)‖2
Mk+1(‖∇̃f(xk)‖+Δ)

� 2

α(2 − α)
(f(xk)− f(xk+1)) +

2Δ

Mk+1(2− α)
.
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Inequalities (25) and (26) mean that for Mk+1 � M, the iteration exit criterion of Algorithm 1
(see line 7) is automatically satisfied.

Lemma 6. Let f(x) be a ρ-quasar-convex function with ρ ∈
(
1
2 , 1

]
, and let {Mi}ki=0 be some se-

quence of positive numbers from Algorithm 1. If α � 2ρ−1
ρ , then

‖xk+1 − x∗‖ � ‖xk − x∗‖+Δηk +
1

Mk+1
. (27)

Proof. Since xk+1 = xk − ηk∇̃f(xk), the following equalities are valid:

‖xk+1 − x∗‖2 = ‖xk − x∗ − ηk∇̃f(xk)‖2
= ‖xk − x∗‖2 − 2ηk〈∇̃f(xk), xk − x∗〉+ η2k‖∇̃f(xk)‖2.

By the quasar-convexity of the function f, we obtain

‖xk+1 − x∗‖2

� ‖xk − x∗‖2 − 2ηk(ρ(f(xk)− f∗)−Δ‖xk − x∗‖) + η2k‖∇̃f(xk)‖2
(26)

� ‖xk − x∗‖2 − 2ηk(ρ(f(xk)− f∗)−Δ‖xk − x∗‖)

+ αηk

(
2

α(2− α)
(f(xk)− f∗) +

2Δ

Mk+1(2− α)

)
= ‖xk − x∗‖2 + ηk

(
2

2− α
− 2ρ

)
(f(xk)− f∗)

+ 2Δηk

(
‖xk − x∗‖+ α

Mk+1(2− α)

)
.

Let the parameter α be chosen so that 2
2−α − 2ρ � 0. As α ∈ (0, 1], this is possible if and only

if ρ ∈
(
1
2 , 1

]
. In this case, we have

‖xk+1 − x∗‖2 � ‖xk − x∗‖2 + 2Δηk‖xk − x∗‖+Δ2η2k +
2αΔηk

Mk+1(2− α)
−Δ2η2k

= (‖xk − x∗‖+Δηk)
2 +Δηk

(
2α

Mk+1(2− α)
−Δηk

)
.

Consider the function y(t) = −t2 + 2α
Mk+1(2−α) t. At the point t =

α
Mk+1(2−α) it reaches the maximum

value α2

M2
k+1

(2−α)2
, and α2

M2
k+1

(2−α)2
� 1

M2
k+1

for α � 1. Thus,

‖xk+1 − x∗‖2 � (‖xk − x∗‖+Δηk)
2 +

1

M2
k+1

.

Note that for a, b, c > 0, the inequality a2 � b2 + c2 implies a2 � (b+ c)2. Hence, a � b+ c, and,
consequently,

‖xk+1 − x∗‖ � ‖xk − x∗‖+Δηk +
1

Mk+1
.

Note that inequalities (25) and (26) surely hold under Mk+1 � M. If ‖∇̃f(xk)‖ � 5Δ and
Mi � M0

2 ∀i = 1, k + 1 with some M0 > 0, then

ηk =
α

Mk+1

(
‖∇̃f(xk)‖+Δ

) � α

6Mk+1Δ
� α

3M0Δ
.
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Theorem 2. Let f(x) be a ρ-quasar-convex and (0,M)-smooth function, where ρ ∈
(
1
2 , 1

]
,

α ∈ (0, 1], and α � 2ρ−1
ρ . Then after

⌈
8M(f(x0)−f∗)

3α(2−α)Δ

⌉
iterations of Algorithm 1, there exists an iter-

ation k for which either ‖∇̃f(xk)‖ < 5Δ, or the exact solution will be reached.

Proof. In view of ‖∇̃f(xk)‖ � 5Δ, summing over k from 0 to N − 1 in inequality (25) yields
the relations

f(x0)− f∗ � f(x0)− f(xN ) � 3α(2 − α)Δ

4

N−1∑
k=0

1

Mk+1
,

which can be written as
N−1∑
k=0

1

Mk+1
� 4(f(x0)− f∗)

3α(2 − α)Δ
.

Considering that Mi � 2M, we estimate the number of iterations for which ‖∇̃f(xk)‖ � 5Δ. We

have N
2M � 4(f(x0)−f∗)

3α(2−α)Δ , or, in the final form,

N �
⌈
8M(f(x0)− f∗)
3α(2 − α)Δ

⌉
.

Remark 6. Suppose that an acceptable solution quality is achieved under the condition
‖∇̃f(xk)‖ < 5Δ. Indeed, the ρ-quasar-convexity of the function f and inequality (27) imply

f(xk)− f∗ � 1

ρ

(
‖∇̃f(xk)‖+Δ

)
‖xk − x∗‖ � 6Δ

ρ

(
‖x0 − x∗‖+ (α+ 6)N

3M0

)
.

Hence, with a small number of iterations, one can guarantee a solution quality within O(Δ). In
the case of large values of N, this cannot be stated for sure. Note that if the objective function
satisfies the PL condition, an acceptable solution quality will be achieved under a small norm of
the inexact gradient (see Remark 4).

In the special case Δ = 0, we have the following result.

Theorem 3. Let f(x) be a ρ-quasar-convex and (0,M)-smooth function, where ρ ∈
(
1
2 , 1

]
,

α ∈ (0, 1], and α � 2ρ−1
ρ . Then Algorithm 1 with Δ = 0 converges at the rate of a geometric pro-

gression.

Proof. Consider the case Δ = 0, i.e., ∇̃f(x) = ∇f(x) for each x. Then from line 7 of Algorithm 1
it follows that

f(xk)− f(xk+1) �
α(2 − α)

2Mk+1

‖∇f(xk)‖2
‖∇f(xk)‖ =

(2− α)ηk
2

‖∇f(xk)‖2. (28)

In this case, we also have the relations

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2ηk〈∇f(xk), xk − x∗〉+ η2k‖∇f(xk)‖2
� ‖xk − x∗‖2 − 2ηkρ(f(xk)− f∗) + η2k‖∇f(xk)‖2

� ‖xk − x∗‖2 − 2ηkρ(f(xk)− f∗) +
2ηk

(2− α)
(f(xk)− f∗)

= ‖xk − x∗‖2 + ηk(f(xk)− f∗)
(

2

2− α
− 2ρ

)
� ‖xk − x∗‖2 � ‖x0 − x∗‖2 = R2,
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where α ∈ (0, 1] and ρ ∈
(
1
2 , 1

]
. Further, by the quasar-convexity of the function f,

f(xk)− f∗ � 1

ρ
‖∇f(xk)‖‖xk − x∗‖ � 1

ρ
‖∇f(xk)‖‖x0 − x∗‖ =

R

ρ
‖∇f(xk)‖.

Recall that, due to Lemmas 4 and 5, for Mk+1 � M the iteration exit criterion of Algorithm 1 (see
line 7) is surely satisfied. Then for each k � 0 we have Mk+1 � 2M, and from (28) it follows that

f(xk+1)− f∗ � f(xk)− f∗ − α(2 − α)

2Mk+1
‖∇f(xk)‖

� f(xk)− f∗ − α(2 − α)

2Mk+1

ρ

R
(f(xk)− f∗)

�
(
1− α(2 − α)ρ

2Mk+1R

)
(f(xk)− f∗)

�
(
1− α(2 − α)ρ

4MR

)
(f(xk)− f∗)

�
(
1− α(2 − α)ρ

4MR

)k+1

(f(x0)− f∗).

The proof of Theorem 3 is complete.

5. COMPUTATIONAL EXPERIMENTS

This section presents the results of computational experiments conducted to assess the efficiency
of the proposed algorithms when minimizing the logistic function (29) and the quasar-convex func-
tion (30).

5.1. Testing Results for Adaptive Algorithm 1

Let us compare Algorithm 1 with the adaptive universal gradient method [30] for the problem
of minimizing the logistic function from Example 3:

f(x) =
1

m

m∑
i=1

log(1 + exp(−a�i x)), ai ∈ R
n. (29)

As is well known, the logistic function (29) is convex and L-smooth with the constant L= 1
m

m∑
i=1

‖ai‖2,
as well as (L0, L1)-smooth with the parameters L0 = 0 and L1 = max

1�i�m
‖ai‖.

The algorithms were run with the parameters n = 1000 and m = 100 and the initial point x0 =
(1, . . . , 1) ∈ R

n. The gradient inexactness parameter Δ took values from the set {0.5; 0.1; 0.05; 0.01}.
The vectors {ai}mi=1 were generated randomly from the standard Gaussian distribution. Figure 1
shows the iteration-to-iteration dynamics of the objective function values for the algorithms com-
pared. According to the numerical results, Algorithm 1, which uses (L0, L1)-smoothness, demon-
strates higher efficiency compared to the adaptive universal gradient method [30].

5.2. A Nonconvex Problem Example from the Class of Quasar-Convex Functions

This subsection presents a comparison of the proposed method (9) with the step size (10) and
the gradient method with a constant step size of 0.001 on the example of a quasar-convex function
from [27]:

f(x) = h(‖x‖2)g
(

x

‖x‖2
)
, (30)
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Fig. 1. Numerical solution of the logistic regression problem with (29), n = 103, and m = 100 :
Algorithm 1 vs. the adaptive universal gradient method [30].

Fig. 2. The results of minimizing the objective function (30): algorithm (9) with the step size (10) vs.
the gradient method with constant step size.

where h(t) = t2 and

g(x1, x2) = 1 +
1

4N

N∑
i=1

ai sin
2(bix1) + ci cos

2(dix2).

In the computational experiments, the elements of the sequences {ai}i and {ci}i were assigned
independent uniform distributions on the interval [0, 20). Similarly, the elements of the sequences
{bi}i and {di}i were independently and uniformly distributed on the interval [−25, 25). All methods
were initialized from the starting point (1, 1) with the parameters N = 10 and α = 0.01. Figure 2
shows the iteration-to-iteration dynamics of the objective function values for the algorithms com-
pared. According to the experimental results, the proposed algorithm (9) with the step size (10)
chosen based on the (L0, L1)-smoothness of the objective function has higher efficiency than the
gradient method with a constant step size.
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6. CONCLUSIONS

In this paper, we have proposed and analyzed several gradient methods for minimizing (L0, L1)-
smooth objective functions under the additive inexactness in the gradient values at the iterations.
Attention has been focused on investigating the convergence of these methods for some classes of
nonconvex functions, such as ρ-quasar-convex ones and those satisfying the Polyak–�Lojasiewicz
(PL) condition.

The state-of-the-art research in this field has been reviewed. All key definitions and auxiliary
results have been adapted to the case of a Δ-inexact gradient. Some lemmas characterizing the
impact of the additive gradient error on the trajectory of the gradient method have been formulated
and proven. The convergence rate of the gradient method on the class of quasar-convex functions
satisfying the PL condition has been estimated theoretically. In particular, the method has been
shown to converge at a nearly linear rate (up to some parameters related to the errors). It has
also been proven that starting from some iteration, the method converges to a neighborhood of the
exact solution on the class of functions with the PL condition. Separate consideration has been
given to a detailed study of the case L0 = 0 (the class of (0,M)-smooth functions), which is of
significant interest for machine learning problems, such as training logistic regression models. An
adaptive modification of the gradient method using inexact gradient values has been developed,
and a theoretical estimate of its convergence rate has been derived. In the case of exact gradient
values (for Δ = 0), the method has been shown to converge at the rate of a geometric progression.
The efficiency of the proposed methods has been confirmed by the results of computational experi-
ments conducted both on the logistic regression problem and on a certain nonconvex quasar-convex
problem.

Concerning directions for further research, it seems interesting to study accelerated methods for
(L0, L1)-smooth problems with inexact gradient information and develop methods with adaptive
tuning to the parameters L0 and L1.
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